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Outline

» Problem description
> Production process involving desirable and undesirable products

> Continuous-time problem containing nonconvex functions and integer decision variables

» Discrete-time MINLP formulations
> Existing “natural” approach
> An alternative formulation that is more accurate and easier to solve

» MILP approximations and relaxations

» Performance evaluation
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Problem Description
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Production Process

» Problem contains many linked production processes, e.g., as part of a supply
network, over a planning horizon [0, T]

» We focus on model for a single process; in full problem, use one copy of model for
each process

» Each production process creates a mixture of useful products P* and undesirable
byproducts P~

» Discrete decisions for if and when each production process starts (fixed cost)
» Continuous decisions determine the amount of mixture to produce over time

» Maximum production rate and mixture composition are functions of the cumulative
total production at each process
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Production functions

» Production function f(-) is a concave function that determines the maximum
production rate as a function of cumulative total production

Maximum production rate (f)

Total production (v,)
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Production functions

» Production function f(-) is a concave function that determines the maximum
production rate as a function of cumulative total production

» Product fraction functions g,(-) are monotone functions of the cumulative total
production, for each p€ P =Pt UP~

Maximum production rate (f) Product fraction (g,)
— iUseful product

B | — iBy-product

Total production (v,) Total production (v,)
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Continuous-time formulation

Decision variables: Production rates x(t) > 0, t € [0, T] and start-time indicator
z(t) € {0,1}, t €0, T]
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Continuous-time formulation

Decision variables: Production rates x(t) > 0, t € [0, T] and start-time indicator
z(t) € {0,1}, t € [0, T]

Cumulative total production v(t) is calculated using production rate

v(t) = /tx(s)ds
0
Mixture production rate is limited by production function f(-)
x(t) < f(v(t))
Product production rates y,(t) calculated by fraction functions g,(-)
¥p(t) = x(t)gp(v(1))
Production can only be positive after the process starts, z(t) =1

v(t) < Mz(t)
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Discrete-Time Formulations
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Discrete-time formulations

Past models have proposed a natural discretization of this continuous-time model.

Continuous-time formulation Discrete-time formulation (Fy)
(CNT)
Decision variables:

x(t) < f(v(t)) Xt Mixture production during time

period t € T.
t
v(t) = / x(s)ds == v  Cumulative production up to
0 time period t € T.

yo(t) = x(t)gp(v(t)) Yp,t !:’rod.uct p 6'73 production dur-
ing time period t € T.

v(t) < Mz(t) z:  Facility on/off decision vari-
able.

z(t) :[0, T] — {0, 1}, increasing
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Discrete-time formulations

Past models have proposed a natural discretization of this continuous-time model.

Continuous-time formulation Discrete-time formulation (Fy)

(CNT)
Xt F (v
x(t) < F(v(t)) < Def(ves)
v = tX - Vi = sz
(t) /0 (S)ds s=0
yp(t) = X(t)gp(v(t)) Yp,t = thp(Vt71)
v(t) < Mz(t) ve < Mz,
z(t) :[0, T] — {0, 1}, increasing 2 >z 1
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Drawbacks of the natural discrete-time formulation F;

1. Piecewise-constant representation of product amounts is inaccurate

Ypt = thp(thl)

Useful product fraction (g,-) By-product fraction (g, )

) T3 Fpd 2R

08 08

02 0.4 [ 0.2 0.4 06
Total Production (v,) Total Production (v;)

> Overestimates useful products, underestimates byproducts

> Errors accumulate over time periods
> Improvements are possible using midpoints, but errors will persist
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Drawbacks of the natural discrete-time formulation F;

1. Piecewise-constant representation of product amounts is inaccurate

Ypt = thp(thl)

Useful product fraction (g,-) By-product fraction (g, )
1 ZZ4-Fy| 10773 Fy

08 08

02 0.4 [ 0.2 0.4 06
Total Production (v,) Total Production (v;)

> Overestimates useful products, underestimates byproducts

> Errors accumulate over time periods
> Improvements are possible using midpoints, but errors will persist

2. Production amounts are a nonconvex function of two variables
> Nasty to obtain global solutions or bounds
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Alternate formulation

> Given cumulative total production v;, we can calculate exactly how much of product
p € P is produced up to and including time period t:

/Otyp(s)ds
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Alternate formulation

» Given cumulative total production v;, we can calculate exactly how much of product
p € P is produced up to and including time period t:

/Ot}/p(s)ds = /OtX(s) g»(v(s))ds = /OVr g»(v)dv

since v(t) = [; x(s) ds
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Alternate formulation

» Given cumulative total production v;, we can calculate exactly how much of product
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Alternate formulation

» Given cumulative total production v;, we can calculate exactly how much of product
p € P is produced up to and including time period t:

o()ds= [ x(5) go(v(s)ds = [ gp(v)v L ho(v)
/ I /

since v(t) = [; x(s) ds
» Then, the amount of product p € P produced during discrete time period t is exactly

Yp,t = hp(Vt) - hP(Vt—l)

Useful product fraction (g,+) By-product fraction (g,- )
Lop 774 F;- 4 1ol L2724  Fy 4
1 F 1 F
0.8 - 0.8 -
0. - 0.6 -
0.4 - 0.4 4
0.2 - 0.2 -
A
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
Total Production (v,) Total Production (v,)
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Alternate formulation — Another advantage

Original Formulation Fi: Alternative Formulation F»:

Yo,t = Xe€p(Vi-1) Yot = hp(ve) — hp(vi-1)

Computational advantages of alternative formulation

» Deals only with differences of functions of a single variable
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Alternate formulation — Another advantage

Original Formulation Fi: Alternative Formulation F»:

Yo,t = Xe€p(Vi-1) Yot = hp(ve) — hp(vi-1)
Computational advantages of alternative formulation

» Deals only with differences of functions of a single variable

> g, monotone increasing = hy(v:) = [ gp(v)dv is convex!

> g, monotone decreasing = hy(vt) = [ gp(v)dv is concave!

Product fraction (g,) Cumulative product (h,)

Useful praduct Useful praduct
By-product By-product

Total production (v,) Total production (v,)
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MIP Approximation and Relaxations
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Approximations and Relaxations

Challenge

Even though h, are convex (or concave), the constraints

Yp,t = hp(Vt) - hP(thl)

are still nonconvex

» Obtaining good bounds using general-purpose techniques can still be difficult
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Approximations and Relaxations

Challenge

Even though h, are convex (or concave), the constraints
Yp,t = hp(Vt) - hP(thl)
are still nonconvex
» Obtaining good bounds using general-purpose techniques can still be difficult
Our approach
Use piecewise linear modeling to obtain MIP approximations and relaxations

» Reason for hope: Only need to approximate “mild” univariate functions
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Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations

Maximum production rate ( Cumulative useful product (g,-) Cumulative by-product (h,

- /(
Total production (v,) Total production (v;) Total production (v,)
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Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations
» Pros

> ‘Close’ to a feasible solution of the MINLP formulation
» Fixing integer decisions, then solving continuous NLP may yield a good solution

Maximum production rate ( Cumulative useful product (g,-) Cumulative by-product (h,

_— /(
Total production (v,) Total production (v;) Total production (v,)
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Piecewise Linear Approximation (PLA)

Approximate all the nonlinear production functions with piecewise linearizations
» Pros

> ‘Close’ to a feasible solution of the MINLP formulation
» Fixing integer decisions, then solving continuous NLP may yield a good solution

» Cons

> Introduces additional SOS2 variables to branch on
» NOT a relaxation of the original formulation

Maximum production rate ( Cumulative useful product (g,-) Cumulative by-product (h,

_— /(
Total production (v,) Total production (v;) Total production (v,)
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Piecewise Linear Approximation (PLA)

Formulation F Piecewise Linear Approximation
(PLA)
Xt S Atf(vtfl)

Yo, = hp(ve) — hp(ve-1)

Cumulative useful product (g, )

lay.g, (a,)] L4395 (as)

D

[a,.9,(a,

La,9,(aq)]
Total production (v,)
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Piecewise Linear Approximation (PLA)

Formulation f Piecewise Linear Approximation
(PLA)
Xt S Atf(vtfl)

Yo, = hp(ve) — hp(ve-1)

Vi = Z B, /\t,o

ocO
Cumulative useful product (g, )
xt < A E Fo )\t,o
ocO
= W, — Wp t—
(g, (a)) _1:9(%) Yot Pt Pt
=i Wpt = g Hp,o >\t,o
lay,9,(a)}>" ocO
1= g )\t,o
ocO
fa.9,00)] {At,o|l0 € O} is S0S2

Total production (v,)
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Secant Relaxation (1-SEC)
» Pros

Relax all the nonlinear production functions using inner and outer approximations.
> Relaxation of the original formulation.

» Does NOT introduce additional SOS2 variables.

Maximum production r:

\

ate (f) Cumulative useful product (h,

)

Cumulative by-product (h,

Total production (v,)

Total production (v;)

Total production (v,)
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Secant Relaxation (1-SEC)

» Pros

» Cons

Relax all the nonlinear production functions using inner and outer approximations.
> Relaxation of the original formulation.
> Does NOT introduce additional SOS2 variables.

Maximum production r:

P \

> May not be ‘close’ to a feasible solution of the MINLP formulation.

ate (f) Cumulative useful product (h,

)

Cumulative by-product (h,

Total production (v,)

Total production (v;)

Total production (v,)
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Secant Relaxation (1-SEC)
» Pros

> Relaxation of the original formulation.
» Cons

Relax all the nonlinear production functions using inner and outer approximations.
> Does NOT introduce additional SOS2 variables.

Maximum production r:

\

> May not be ‘close’ to a feasible solution of the MINLP formulation.

ate (f) Cumulative useful product (h,

)

Cumulative by-product (h,

Total production (v,)

Total production (v;)

Total prod/uc/tion (v)
Formulation is similar to PLA, except data is different and SOS2 restriction is omitted
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Multiple Secant Relaxation (k-SEC)

Relax all the nonlinear production functions using inner and outer approximations but use
multiple secants instead of a just a single one.

» Pros
> 'Close’ to a feasible solution of the MINLP formulation.
> Relaxation of the original formulation.

Cumulative useful product (h,-) Cumulative by-product (h,+)

Total production (v,) Total production (v,)

Jim Luedtke (UW-Madison) 17 /25



Multiple Secant Relaxation (k-SEC)

Relax all the nonlinear production functions using inner and outer approximations but use
multiple secants instead of a just a single one.

» Pros
> 'Close’ to a feasible solution of the MINLP formulation.
> Relaxation of the original formulation.

» Cons
> Introduces additional SOS2 variables to branch on.

Cumulative useful product (h,-) Cumulative by-product (h,+)

Total production (v,) Total production (v,)
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Performance Evaluation
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Experiments

Goals

» Compare formulation accuracy between F; and F,

» Compare solution time between F; and F;

Sample Application

Multiple period production and distribution problem with fixed costs for opening
production facilities that supply products to customers

Solvers
» To solve F1: BARON 9.3.1

» To solve MIP approximations and linearizations of F,: Gurobi 4.5.1
» To solve NLPs with integer variables fixed: KNITRO 3.14

Jim Luedtke (UW-Madison) 19 /25



Test Problem

» Multiple period production and distribution problem with production facilities 7
manufacturing products P* for customers J
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Test Problem

» Multiple period production and distribution problem with production facilities 7
manufacturing products P* for customers J

» Deterministic customer demands with penalty (lost revenue) for shortage
» Facility operations follow known production functions

» Fixed costs for opening facilities and variable operating and transportation costs
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Accuracy

Assessing impact of inaccuracy formulation F;

4.0t

Objective function

Formulation F,
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» Solve formulation F; (approximately)
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Accuracy

Assessing impact of inaccuracy formulation F;

Repaired F, solution

Formulation F,

Objective function
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» Solve formulation F; (approximately)

> Repair the solution
> Fix the mixture production decisions
x¢ and z¢
> Correctly calculate the product
production amounts yj ¢
> Re-solve the transportation problem
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Accuracy

Assessing impact of inaccuracy formulation F;

Repaired F, solution

Formulation F,

4.0F

Formulation F,

Objective function

Jim Luedtke (UW-Madison)

» Solve formulation F; (approximately)

> Repair the solution
> Fix the mixture production decisions
x¢ and z¢
> Correctly calculate the product
production amounts yj ¢
> Re-solve the transportation problem

» Compare to F; solution

> F; yields solutions 7 - 50% more
costly!
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Computational Efficiency

Quality of Lower Bounds
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Computational Efficiency

Quality of Lower Bounds
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Quality of Solutions
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Conclusions

» Problem Description

> Defined a nonconvex production process involving desirable and undesirable products

> Ratio of byproducts to total production increases monotonically
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Conclusions

» Problem Description
> Defined a nonconvex production process involving desirable and undesirable products
> Ratio of byproducts to total production increases monotonically

> Methods
> Introduced a new discrete-tiem formulation (F2) based on the cumulative product

production amounts that is more accurate and computationally attractive than
“natural” approach

> Devised scalable MIP approximations and relaxations (PLA, 1-SEC, k-SEC)
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Strengthening the MIP Formulations

Key Idea

» Production functions are positive only if the facility is open
> Applies to the 1-SEC, PLA and k-SEC models
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Strengthening the MIP Formulations

Key Idea

» Production functions are positive only if the facility is open
> Applies to the 1-SEC, PLA and k-SEC models

Original Formulation...

Vi = Z B, )\t,o

0O
Wp,t = E Hp,o At,o
0O
1: E )\t’o
0O
ve < Mz,
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Strengthening the MIP Formulations

Key Idea

» Production functions are positive only if the facility is open
> Applies to the 1-SEC, PLA and k-SEC models

Original Formulation... .
& Stronger Formulation...

Vt:§ Bo Atyo

’ v = E B, A

0cO t - o t,o
o€

Wp,t = E Hp,o At,o
Wp,t = E Hp,o At,o

ocO

1= Ao
c;j ) thz/\t,o

ve < MZt ocO

o€
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Effect of MIP Formulation Strengthening

[ — strengthening -- no strengthening]
Piecewise linear approximation (PLA) Secant relaxation (1-SEC) Multiple secant relaxation (3-SEC)
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Gaps obtained after one hour time limit when solving the MIP Formulations
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